Manual Reference Pages  - REMQUO (P)

PROLOG

This manual page is part of the POSIX Programmer’s Manual. The Linux implementation of this interface may differ (consult the corresponding Linux manual page for details of Linux behavior), or the interface may not be implemented on Linux.

CONTENTS

Name
Synopsis
Description
Return Value
Errors
Examples
Application Usage
Rationale
Future Directions

NAME

remquo, remquof, remquol - remainder functions

SYNOPSIS

#include <math.h>

double remquo(double x, double y, int *quo);
float remquof(float
x, float y, int *quo);
long double remquol(long double
x, long double y, int *quo);

DESCRIPTION

The remquo(), remquof(), and remquol() functions shall compute the same remainder as the remainder(), remainderf(), and remainderl() functions, respectively. In the object pointed to by quo, they store a value whose sign is the sign of x/ y and whose magnitude is congruent modulo 2**n to the magnitude of the integral quotient of x/ y, where n is an implementation-defined integer greater than or equal to 3.

An application wishing to check for error situations should set errno to zero and call feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is non-zero or fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has occurred.

RETURN VALUE

These functions shall return x REM y.

If x or y is NaN, a NaN shall be returned.

If x is ±Inf or y is zero and the other argument is non-NaN, a domain error shall occur, and either a NaN (if supported), or an implementation-defined value shall be returned.

ERRORS

These functions shall fail if:
Domain Error
The x argument is ±Inf, or the y argument is ±0 and the other argument is non-NaN.
If the integer expression (math_errhandling & MATH_ERRNO) is non-zero, then errno shall be set to [EDOM]. If the integer expression (math_errhandling & MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception shall be raised.

The following sections are informative.

None.

APPLICATION USAGE

On error, the expressions (math_errhandling & MATH_ERRNO) and (math_errhandling & MATH_ERREXCEPT) are independent of each other, but at least one of them must be non-zero.

RATIONALE

These functions are intended for implementing argument reductions which can exploit a few low-order bits of the quotient. Note that x may be so large in magnitude relative to y that an exact representation of the quotient is not practical.

None.